HONORS BIOLOGY (Molecular) | Curriculum Map and Pacing Guide

COURSE DESCRIPTION:	Course SCI330
This course focuses on the content of biology at the level or organization of molecules. Molecular	1 year, 1 credit
biology and the theory of evolution by natural selection tie together chapters as emphasis changes	Grades 9-10
gradually from molecules to cells, to individuals to populations, and finally to the biosphere.	Prerequisite: Physical Science or
Providing insight into molecular biology enables students to understand better the rapid advances in	comparable course; Geometry or
biotechnology and provides them with the knowledge necessary to make informed decisions about	teacher recommendation
the legal, ethical and society issues biotechnology raises.	

	QUARTER 1			
Topic: Foundations/Science Skills				
Key Terms: biology, biosphere, co	ontrolled experiment, discovery science, eukaryotic cell, ecosystem,	genes, hypothesis, natural selection,		
prokaryotic cell, science, scientifi	c method, theory			
Intellectual Disposition/Measura	able Skills: making predictions, problem solving, investigating, collect	ting, interpreting and recording data,		
concluding and presenting data in	n a lab report			
Ohio Science Standards (2018)	8) Student Learning Targets Learning Activities/Investigation			
B.SIA: Science Inquiry and	Identify questions and concepts that guide scientific	Garbology lab		
Application	investigations.	Lasting footprints online activity		
	Design and conduct scientific investigations.			
	Use technology and mathematics to improve investigations and			
	communications.			
	Formulate and revise explanations and models using logic and			
	evidence (critical thinking).			
	Recognize and analyze explanations and models.			
	Communicate and support a scientific argument.			
B.DI.1: Biodiversity	Describe the biological criteria that needs to be met in order for			
	an organism to be considered alive.			
	Define and provide examples of each level of organization (e.g.,			
	biosphere, biome, ecosystem, community, population,			
	multicellular organism, organ system, organ, tissue, cell,			
	organelle, molecule, atom, subatomic particle).			

QUARTER 1				
Topic: Foundations/Science Skills	3			
Key Terms: biology, biosphere, c	ontrolled experiment, discovery science, eukaryotic cell, ecosystem,	genes, hypothesis, natural selection,		
prokaryotic cell, science, scientifi	ic method, theory			
Intellectual Disposition/Measura	able Skills: making predictions, problem solving, investigating, collec	ting, interpreting and recording data,		
concluding and presenting data i	n a lab report			
Ohio Science Standards (2018)	Student Learning Targets Learning Activities/Investigations			
	Design and conduct investigations appropriately using essential	Garbology lab		
	processes of inquiry.			
	Use mathematics to enhance the scientific inquiry process. Garbology lab			
B.C.1: Cell Structure and	Analyze the similarities and differences among a plant versus	Microscope or photo comparison		
Function	animal cell and eukaryotic versus prokaryotic cells.			
B.E.1: Evolution	Discuss Darwin's principle of survival of the fittest, and explain	Discussion of examples		
	what Darwin meant by natural selection.			

QUARTER 1			
Topic: Biochemistry, Molecules of	Life		
Key Terms: acid, aqueous solutio	n, base, buffers, chemical reactions, compounds, covalent bond, heat,	, hydrogen bonds, ions, mass,	
molecule, pH scale, polar molecul	e, Radioactive Isotope, reactants, solute, solution, solvent, carbohydr	ates, dehydration reaction,	
denaturation, functional groups, g	glycogen, hydrolysis, hydrophilic, hydrophobic, isomers, lipids, macron	nolecules, monomers, organic	
compounds, polymers, polypeptic	le, saturated, steroids, trans fat, unsaturated		
Intellectual Disposition/ Measura	able Skills: model, investigate, analyze, compare/contrast, differentiat	e, explain, describe	
Ohio Science Standards (2018)	Student Learning Targets Learning Activities/Investigations		
B.C.1: Cell Structure and	Explain how a complex network of proteins provides organization	Physical science review	
Function	and shape to a cell.		
	Describe how cells function within a narrow range of temperature	pH lab	
	and pH.		
B.C.2: Cellular Processes	Distinguish between the chemical reactions of cells that involve	pH lab, carbohydrate lab	
	water and carbohydrates, proteins, lipids, and nucleic acids.		
	Describe how a special group of proteins, enzymes, enables		
	chemical reactions to occur in living systems.		
B.C.2: Cellular Processes	Describe how organisms transform energy (flow of energy) and		
	matter (cycles of matter) as they survive and reproduce.		

QUARTER 1

Topic: Biochemistry, Molecules of Life

Key Terms: acid, aqueous solution, base, buffers, chemical reactions, compounds, covalent bond, heat, hydrogen bonds, ions, mass, molecule, pH scale, polar molecule, Radioactive Isotope, reactants, solute, solution, solvent, carbohydrates, dehydration reaction, denaturation, functional groups, glycogen, hydrolysis, hydrophilic, hydrophobic, isomers, lipids, macromolecules, monomers, organic compounds, polymers, polypeptide, saturated, steroids, trans fat, unsaturated

Intellectual Disposition/ Measurable Skills: model, investigate, analyze, compare/contrast, differentiate, explain, describe

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations	
	Show how chemical reactions (e.g., photosynthesis, fermentation,	HHMI "Got Lactose"	
	cellular respiration) can be represented by chemical formulas.		
B.DI.2: Ecosystems	Investigate "the effects of physical and chemical constraints on all	pH lab	
	biological relationships and systems."		
B.C.1: Cell Structure and	Identify subatomic particles and describe how they are arranged in		
Function	atoms.		
	Describe the difference between ions and atoms and the		
	importance of ions in biological processes.		
	Compare the types of bonding between atoms to form molecules.		
	Explain the fundamental principles of the pH scale and	pH LabQuest/probe lab	
	consequences of having the different concentrations of hydrogen		
	and hydroxide ions.		
B.DI.1: Biodiversity	Define and explain the unique properties of water that are		
	essential to living organisms.		
B.C.1: Cell Structure and	Explain the difference between organic and inorganic compounds.	Macromolecules POGIL	
Function	Describe the general structure and function including common	Trans fat activity	
	functional groups of monosaccharides, disaccharides,	Carbohydrate modeling and carb lab	
	polysaccharides, carbohydrates, fatty acids, glycerol, glycerides,		
	lipids, amino acids, dipeptides, polypeptides, protein and nucleic		
	acids.		

	QUARTER 1			
Topic: Cell Structure and Activity				
Key Terms: cell theory, central vac	cuole, chloroplasts, chromatin, chromosomes, cilia, cytoplasm, cytos	keleton, cytosol, flagella, golgi		
apparatus, light microscope, lysos	ome, microtubles, mitochondria, nuclear envelope, nucleiod, nuclec	ous, nucleus, plasma membrane,		
ribosome, rough ER, scanning elec	tron microscope, smooth ER, transmission electron microscope, tra	nsport vesicles, vacuoles		
Intellectual Disposition/Measura	ble Skills: construct, organize, relate, compare, contrast, describe, e	xplain		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations		
B.C.1: Cell structure and function	Distinguish between the specialized parts for transport of			
	materials, energy transformations, protein building, waste			
	disposal, information feedback and movement.			
	Describe the molecular composition of a living cell specifically its	Video: "Magic of Cells"		
	elements and complex molecules.			
	Describe the components of the cell membrane, also known as	Construct plasma membrane model		
	the as the plasma membrane and how it controls what enters	POGIL plasma membrane		
and leaves the cell.				
B.H.3: Genetic mechanisms and	Explain how cells in an individual can be very different from one			
inheritance	another even though they are descended from a single cell, all			
	having identical instructions.			
B.C.1: Cell structure and function	Describe the functions of all major cell organelles, including			
	nucleus, ER, RER, Golgi apparatus, ribosome, mitochondria,			
	microtubules, microfilaments, lysosomes, centrioles, and cell			
	membrane.			
	Analyze the similarities and differences among a plant versus	Microscope lab		
	animal cell and eukaryotic versus prokaryotic cells.			
	Contrast the structure and function of subcellular components of	Microscope lab		
	motility (e.g., cilia, flagella, and pseudopoda).			

_		_	_	_	-
		• •		•	-
	V^\			•	
			_		

Topic: Cell Structure and Activity: Working Cell

Key Terms: active transport, ATP, chemical energy, diffusion, endocytosis, energy, entropy, exocytosis, facilitated diffusion, hypertonic, hypotonic, induced fit, isotonic, kinetic energy, metabolism, osmoregulation, osmosis, passive transport, phagocytosis, potential energy, signal transduction pathway, transport proteins

Intellectual Disposition/Measurable Skills: Investigate, experiment, examine, interpret, describe, discuss, explain, identify

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
B.C.1: Cell structure and	Explain how complex interactions among different kinds of	
function	molecules in the cell cause distinct cycles of activities such as	
	growth and division.	
	Describe how cells function within a narrow range of	Enzyme Lab Quest/probe lab
	temperature and pH.	
B.C.2: Cellular processes	Explain how cells make proteins, and how proteins catalyze	Jello lab
	most chemical reactions in cells.	
	Relate DNA sequences to protein structure in cells.	
	Describe how a special group of proteins, enzymes, enables	Lactaid/lactose demo
	chemical reactions to occur in living systems.	
	Describe the function of enzymes, including how enzyme-	Jello lab
	substrate specificity works, in biochemical reactions.	
	Explain how cells store energy temporarily as ATP.	
	Explain how the cell membrane maintains homeostasis.	
	Describe and contrast these types of cell transport: osmosis,	Diffusion lab osmosis
	diffusion, facilitated diffusion, and active transport.	Agar glock lab
		Diffusion argumentation

	QUARTER 2		
Topic: Cell Structure and Activity:	Cellular Respiration; Obtaining Energy from Food; Photosynthesis: I	Jsing Light to Make Food	
Key Terms: aerobic, anaerobic, au	totrophs, cellular respiration, citric acid cycle, consumers, fermenta	ition, heterotrophs, photosynthesis,	
producers, Calvin Cycle, carbon fix	ation, chloroplast, C3, C4, CAM plants, light reactions, photon, pho	tosystem	
Intellectual Disposition/Measura	ble Skills: Design, support, examine experiment, interpret, sketch, c	liscuss, describe, explain, investigate	
Ohio Science Standards (2018)	Student Learning Targets Learning Activities/Investigati		
B.C.2: Cellular processes	Investigate the effects of physical/chemical constraints on all	Cellular respiration lab	
	biological relationships and systems.		
	Describe how organisms transform energy (flow of energy) and		
	matter (cycles of matter) as they survive and reproduce.		
	Identify the cellular sites of and follow through the major	POGIL cell respiration	
	pathways of anaerobic and aerobic respiration; compare		
	reactants and products for each process, and account for how		
	aerobic respiration produces more ATP per monosaccharide.		
	Explain how photosynthetic organisms use the process of	Stomate lab	
	photosynthesis and respiration.		
	Explain the interaction between pigments, absorption of light,	Chromatography lab	
	and reflection of light.		
	Describe the light-dependent and light-independent reactions of	Photosynthesis modeling	
	photosynthesis.		
	Relate the products of the light-dependent reactions to	Photosynthesis modeling and	
	products of the light-independent reactions.	argumentation activity	
B.C.2: Cellular processes &	Design and conduct an experiment demonstrating effects of	Elodea lab	
Science Inquiry and Application	environmental factors on photosynthesis.	Design a lab photosynthesis	

	QUARTER 2		
Topic: Genetics: Patterns of Inheri	tance; Cell Reproduction		
Key Terms: asexual reproduction,	autosome, cancer, cell cycle, cell cycle control, cell division, centro	mere, centrosome, chromatin,	
chromosome, crossing over, cytok	inesis, diploid, fertilization, gamete, genetic recombination, haploi	d, homologous, chromosome, karyotype,	
life cycle, meiosis, mitosis, nondisj	unction, sex chromosome, sexual reproduction, tumor, zygote		
Intellectual Disposition/Measural	ble Skills: model, solve, compare, contrast, describe, explain, identi	fy	
Ohio Science Standards (2018)	Student Learning Targets Learning Activities/Investigations		
B.C.2: Cellular processes	Explain how complex interactions among different kinds of	Video: "Mitosis"	
	molecules in the cell cause distinct cycles of activities such as	Online root tip activity	
	growth and division.	Mitosis microscope lab	
	Compare the cellular processes and cellular products of asexual		
	and sexual reproduction, explaining how they are beneficial.		
B.H.3: Genetic mechanisms and	Explain how sorting and recombination of genes in sexual	Model meiosis	
inheritance	reproduction and meiosis results in variance in traits of the		
	offspring of any two parents.		
B.C.2: Cellular processes	Describe the basic process of mitosis.	POGIL mitosis	
	Describe the process of meiosis.	POGIL meiosis	
	Describe how the cell cycle control system normally functions		
	and explain the consequences of errors in the system.		

QUARTER 2

Topic: Genetics: Patterns of Inheritance; Cells from Cells

Key Terms: alleles, carrier, inheritance, codominant, dominant allele, genotype, heredity, heterozygous, homozygous, hybrid, Law of independent assortment, Law of Segregation, linkage map, linked genes, locus, phenotype, recessive allele, recombination, rule of multiplication, wild-type traits.

Intellectual Disposition/Measurable Skills: model, solve, compare, contrast, describe, explain, identify			
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations	
B.H.3: Genetic mechanisms and	Explain how Mendel's Laws of Inheritance are interwoven		
inheritance	with current knowledge of DNA and chromosome structure		
	and function in modern genetics.		
B.H.5: Modern genetics	 Differentiate between incomplete dominance and sex-linked 	Practice Punnett's squares	
	traits, goodness of fit, and dihybrid crosses.		

QUARTER 2

Topic: Genetics: Patterns of Inheritance; Cells from Cells

Key Terms: alleles, carrier, inheritance, codominant, dominant allele, genotype, heredity, heterozygous, homozygous, hybrid, Law of independent assortment, Law of Segregation, linkage map, linked genes, locus, phenotype, recessive allele, recombination, rule of multiplication, wild-type traits.

Intellectual Disposition/Measurable Skills: model, solve, compare, contrast, describe, explain, identify

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
B.H.3: Genetic mechanisms and	Apply Chi-square Analysis (goodness of fit) and Punnett's	M&M Chi-square
inheritance	squares to statistically analyze data.	Live fruit fly lab
B.H.5: Modern genetics	Differentiate between polygenic inheritance, epistasis and	Practice Punnett's squares and genetic
	pleiotrophy.	problems
B.H.4: Mutations	Explain how different phenotypes result from new	Practice Punnett's squares and genetic
	combinations of existing genes or from mutations of genes in reproductive cells.	problems
B.H.3: Genetic mechanisms and	Describe the mode of inheritance in commonly inherited	Practice Punnett's squares and genetic
inheritance	disorders (e.g., sickle cell, Down syndrome, Turner's syndrome, PKU).	problems
	Identify and explain Mendel's law of segregation and law of independent assortment.	Coin toss lab
	Explain how the process of meiosis reveals the mechanism	
	behind Mendel's conclusions about segregation and	
	independent assortment on a molecular level.	
	Define and provide an example of the following: genotype,	Mendel trait activity
	phenotype, dominant allele, recessive allele, codominant allele,	
	incompletely dominant alleles, homozygous, heterozygous and, carrier.	
B.H.5: Modern genetics	Explain sex-linked patterns of inheritance in terms of some	Practice Punnett's squares and genetic
	genes being absent from the smaller Y chromosome and thus	problems
	makes (XY) having a different chance of exhibiting certain traits than do females (XX).	
B.H.3: Genetic mechanisms and	Construct and interpret Punnett squares and pedigree charts	Practice Punnett's squares and genetic
inheritance	(e.g., calculate and predict phenotypic and genotypic ratios and probabilities).	problems

QUARTER 2

Topic: Genetics: Patterns of Inheritance; Cells from Cells

Key Terms: alleles, carrier, inheritance, codominant, dominant allele, genotype, heredity, heterozygous, homozygous, hybrid, Law of independent assortment, Law of Segregation, linkage map, linked genes, locus, phenotype, recessive allele, recombination, rule of multiplication, wild-type traits.

Intellectual Disposition/Measurat	asurable Skills: model, solve, compare, contrast, describe, explain, identify				
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations			
	Infer parental genotypes and phenotypes from offspring data	Problems			
	presented in pedigree charts from the genotypic and	Live fruit fly lab			
	phenotypic ratios of offspring.				

QUARTER 3						
Topic: Genetics: Expressing Genet	ic Information; Structure and Function of DNA					
Key Terms: bacteriophage, DNA, I	NA polymerase, double helix, exons, introns, lysogenic cycle, lytic	cycle, messenger RNA, mutagen,				
mutation, nucleotide, prophage, r	etrovirus, reverse transcriptase, ribosomal RNA, RNA polymerase, I	RNA splicing, transcription, transfer RNA,				
translation						
Intellectual Disposition/Measural	ble Skills: model, solve, construct, explain, describe, differentiate, c	compare				
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations				
B.H.2: Structure and function of	Explain how biological information contained in a genome is	DNA replication activity				
DNA in cells	encoded in its DNA and divided into discrete units called genes.	DNA replication modeling and argument				
Explain how the sequence of DNA bases on a chromosome Protein synthesis activity						
determines the sequence of amino acids in a protein.						
	Explain how inserting, deleting or substituting segments of DNA Protein synthesis activity					
molecules can alter genes.						
B.H.4: Mutations	Explain how altered genes may be passed to every cell that					
	develops from it, and how mutations in gametes can be passed					
	to offspring.					
B.H.1: Cellular Genetics	Describe how different genes are active in different types of					
	cells influenced by the cell's environment and past history."					
B.H.2: Structure and function of	Describe how the development of the model for DNA structure	Video: "Photo 51"				
DNA in cells	was the result of the use of technology and the studies and					
	ideas of many scientists.					

QUARTER 3

Topic: Genetics: Expressing Genetic Information; Structure and Function of DNA

Key Terms: bacteriophage, DNA, DNA polymerase, double helix, exons, introns, lysogenic cycle, lytic cycle, messenger RNA, mutagen, mutation, nucleotide, prophage, retrovirus, reverse transcriptase, ribosomal RNA, RNA polymerase, RNA splicing, transcription, transfer RNA, translation

Intellectual Disposition/Measurable Skills: model, solve, construct, explain, describe, differentiate, compare

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	Explain how genes code for protein and the sequence of DNA	Protein synthesis activity
	bases in a chromosome determines the sequence of amino	
	acids in a protein.	
	Explain how the sequence of DNA bases on a chromosome	Codon coding
	determines the sequence of amino acids in a protein.	
B.H.1: Cellular Genetics	Illustrate how all cell organelles work together by describing	Protein synthesis activity
	the step-by-step process of the translation of an mRNA strand	
	into a protein and its subsequent processing by organelles so	
	that the protein is appropriately packaged, labeled and	
	eventually exported by the cell.	
B.H.2: Structure and function of	Describe the basic structure and function of DNA, mRNA, tRNA,	Protein synthesis activity
DNA in cells	amino acids, polypeptides, and proteins (e.g., replication,	
	transcription, and translation).	
	Describe the experiments of major scientists in determining	Video: "Photo 51"
	both the structure of DNA and the central dogma.	
B.H.1: Cellular Genetics	Use mRNA codon charts to determine amino acid sequences of	Codon coding
	example polypeptides.	
B.H.4: Mutations	Use mRNA codon charts to determine the effects of different	Codon coding
	types of mutations on amino acid sequence and protein	
	structure (e.g., sickle cell).	
B.C.1: Cell structure and function	Distinguish between and among viruses, bacteria and protists,	Protist lab
	and give examples of each.	Virus explorer activity

QUARTER 3				
Topic: Genetics: Expressing Genet	c Information; How Genes Are Controlled			
Key Terms: adult stem cells, cellula	ar differentiation, embryonic stem cells, gene expression, gene reg	ulation, growth factors, homeotic genes,		
proto-oncogene, reproductive clor	ning, signal transduction pathway, therapeutic cloning, tumor-supp	ressor genes, X chromosome Inactivation		
Intellectual Disposition/Measural	ble Skills: model, solve, construct, explain, describe, differentiate, c	compare		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations		
B.H.3: Genetic mechanisms and	Describe how each organism has a genome that contains all of			
inheritance	the biological information needed to build and maintain a living			
	example of that organism.			
B.H.1: Cellular Genetics	Explain how cells in an individual can be very different from	GMO argument and gallery walk		
	one another even though they are descended from a single cell,			
	all having identical genetic instructions.			
	Describe how gene expression is regulated in organisms such	POGIL gene expression and GMO speed		
	that specific proteins are synthesized only when they are	dating		
	needed by the cell (e.g., allowing cell specialization).			
	Complete a major project relating to recombinant DNA cloning,	Video: "Clone"		
	or stem cell research.	POGIL gene expression		

QUARTER 3				
Topic: Genetics and Evolution; How	v Populations Evolve			
Key Terms: biogeography, bottlen	eck effect, comparative anatomy, evolution, evolutionary tree, fou	nder effect, gene flow, gene pool, genetic		
drift, Hardy-Weinberg equilibrium,	homology, microevolution, modern synthesis, natural selection, p	opulation, relative fitness, sexual		
selection, sexual dimorphism, vest	igial structures			
Intellectual Disposition/Measurab	le Skills: solve, support, differentiate, describe, explain, demonstr	ate		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations		
B.E.1: Mechanisms of evolution	Explain how once cells with nuclei developed about a billion			
	years ago, increasingly complex multicellular organisms			
	evolved.			
B.E.1: Mechanisms of evolution	Describe how biological evolution explains the natural origins	Video: "Islands Evolution"		
	for the diversity of life and how evolution changes the	Peppered moth activity		
	properties of a trait in populations.			
B.E.1: Mechanisms of evolution	Explain how modern synthesis is the unification of genetics and	Darwin HHMI clip		
	evolution and historical perspectives of evolutionary theory."			

OUARTER 3							
			Α	•	ΓБ	•	-
	•	•	= 1				

Topic: Genetics and Evolution; How Populations Evolve

Key Terms: biogeography, bottleneck effect, comparative anatomy, evolution, evolutionary tree, founder effect, gene flow, gene pool, genetic drift, Hardy-Weinberg equilibrium, homology, microevolution, modern synthesis, natural selection, population, relative fitness, sexual selection, sexual dimorphism, vestigial structures

Intellectual Disposition/Measurable Skills: solve, support, differentiate, describe, explain, demonstrate **Ohio Science Standards (2018)** Learning Activities/Investigations **Student Learning Targets** Distinguish between gene flow, mutation, speciation, natural Hardy-Weinberg problems **B.E.2:** Speciation selection, genetic drift, sexual selection, and Hardy Weinberg's Law. Explain how Natural Selection is used to describe the process Pock pocket mouse activity by which traits become more or less common in a population HHMI Video: "Rock Pocket Mouse" due to consistent environmental effects upon the survival or reproduction of the individual with the trait. HHMI Video: "Rock Pocket Mouse" Explain how populations evolve over time. B.E.1: Mechanisms of evolution Explain the influence of other scientists (e.g., Malthus, Wallace, Darwin HHMI clip Lamark, and Lyell) and of Darwin's trip on the HMS Beagle in formulating Darwin's ideas of natural selection. Contrast Lamark and Darwin's ideas about changes in organisms over time. Apply the Hardy-Weinberg Law to explain gene frequency **B.E.2:** Speciation patterns in a population. B.E.1: Mechanisms of evolution Explain the biological definition of evolution and how evolution HHMI Video: "Rock Pocket Mouse" is the decent with modification of different lineages from common ancestors. Describe how evolution is the consequence of the interactions Pock pocket mouse activity of (1) potential for a population to increase its numbers, (2) HHMI Video: "Rock Pocket Mouse" genetic variability of offspring due to mutation and recombination of genes, (3) finite supply of the resources required for life, and (4) differential survival and reproduction of individuals with the specific phenotype. B.E.1: Mechanisms of evolution Apply the knowledge of mutation and genetic drift to real-Pock pocket mouse activity world examples. HHMI Video: "Rock Pocket Mouse"

	 _			_	
n	А	D.	15	Ρ.	

Topic: Genetics and Evolution; How Populations Evolve

Key Terms: biogeography, bottleneck effect, comparative anatomy, evolution, evolutionary tree, founder effect, gene flow, gene pool, genetic drift, Hardy-Weinberg equilibrium, homology, microevolution, modern synthesis, natural selection, population, relative fitness, sexual selection, sexual dimorphism, vestigial structures

Intellectual Disposition/Measurable Skills: solve, support, differentiate, describe, explain, demonstrate

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	Explain how heritable characteristics influence how likely an	Pock pocket mouse activity
	organism is to survive and reproduce in a particular	HHMI Video: "Rock Pocket Mouse"
	environment.	
	Provide examples of behaviors that have evolved through	
	natural selection (e.g., migration, courtship rituals).	
	Design, perform and analyze a laboratory simulation of natural	Rock pocket mouse activity
	selection on a working population.	
	Formulate and revise explanations for gene flow and sexual	
	selection based on real-world problems, and describe the basic	
	types of selection, including disruptive, stabilizing and	
	directional.	

	QUARTER 3	
Topic: Genetics and Evolution; How	w Biological Diversity Evolves	
Key Terms: convergent evolution,	evo-devo, macroevolution, phylogenetic tree, punctuated equilibr	ia, reproductive barrier, speciation,
species, taxonomy, three-domain	system	
Intellectual Disposition/Measural	ble Skills: solve, support, differentiate, describe, explain, demonstr	ate
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
B.DI.1: Biodiversity	Describe how both morphological comparisons and molecular	
	evidence must be used to describe biodiversity through	
	cladograms.	
B.E.2: Speciation	Specifically describe the conditions required to be considered a	DVDs: "Islands and Evolutions,"
	species (e.g., reproductive isolation, geographic isolation).	"Salamanders: A Step in Speciation"
B.E.1: Mechanisms of evolution	Explain how natural selection and its evolutionary	
	consequences (e.g., adaptation or extinction) provide a	
	scientific explanation for the fossil record of ancient life-forms	

	QUARTER 3					
Topic: Genetics and Evolution; How	w Biological Diversity Evolves					
Key Terms: convergent evolution,	evo-devo, macroevolution, phylogenetic tree, punctuated equilibr	ia, reproductive barrier, speciation,				
species, taxonomy, three-domain	system					
Intellectual Disposition/Measurab	ble Skills: solve, support, differentiate, describe, explain, demonstr	ate				
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations				
	and the striking molecular similarities observed among the					
diverse species of living organisms.						
	Discuss evidence from the fields of geology, biochemistry,					
	embryology, comparative anatomy, and comparative					
physiology that points to shared evolutionary relationships.						
Explain how Earth's life-forms have evolved from earlier species as a consequence of interaction of (a) the potential of a						
	offspring due to mutation and recombination of DNA.					
B.E.2: Speciation	Distinguish between catastrophism, gradualism and punctuated	HHMI video: "The Day the Mesozoic				
	equilibrium.	Died"				

	QUARTER 3	
Topic: Genetics and Evolution; Evo	lution of Microbial Life; Evolution of Animals	
Key Terms: archaea, bacteria, bina	ary fission, biofilm, ciliates, endosymbiosis, eukarya, flagellates, pro	okaryotes, protists, pseudopdia,
Symbiosis, bilateral symmetry, boo	ly segmentation, chordates, complete digestive tract, dorsal hollow	v nerve cord, endoskeleton, exoskeleton,
gastrovascular cavity, gastrula, Inv	ertebrates, metamorphosis, notochord, pharyngeal slits, radial syn	nmetry, vertebrates
Intellectual Disposition/Measurab	ble Skills: Investigate, explain, describe, differentiate, organize, cor	npare, classify, state, identify
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
BDI.1: Biodiversity	Explain how the diversity of organisms and ecological niches	HHMI videos: "The Day the Mesozoic
	they occupy result from more than 3.5 billion years of	Died," "KT Mass Extinction"
	evolution.	
B.E.2: Speciation	Explain how classification systems are frameworks developed	Shark activity
	by scientists for describing the diversity of organisms indicating	
	the degree of relatedness between organisms.	
	Explain how Earth's present-day species descended from	Salamander lab
	earlier, common ancestral species.	

	QUARTER 3										
Topic: Genetics and Evolution; Evo	Topic: Genetics and Evolution; Evolution of Microbial Life; Evolution of Animals										
Key Terms: archaea, bacteria, bin	ary fission, biofilm, ciliates, endosymbiosis, eukarya, flagellates, pr	okaryotes, protists, pseudopdia,									
Symbiosis, bilateral symmetry, bo	dy segmentation, chordates, complete digestive tract, dorsal hollow	w nerve cord, endoskeleton, exoskeleton,									
gastrovascular cavity, gastrula, Inv	ertebrates, metamorphosis, notochord, pharyngeal slits, radial syr	nmetry, vertebrates									
Intellectual Disposition/Measura	ble Skills: Investigate, explain, describe, differentiate, organize, cor	npare, classify, state, identify									
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations									
	Describe how evolution provides a natural explanation for the	HHMI Video: "Dinosaurs to Birds"									
	diversity of life on Earth as represented in the fossil record, in										
	the similarities of existing species and in modern molecular										
	evidence.										
Differentiate among chemical evolution, organic evolution, and the evolutionary steps along the way to aerobic heterotrophs and photosynthetic autotrophs.											
						Describe the experiments of Redi, Needham, Spallanzani, and					
						Pasteur to support or falsify the hypothesis of spontaneous					
generation.											
	Explain how organisms are classified into a hierarchy of groups	Phylogenetic tree activity									
evolutionary relationships.List each of the major levels in the hierarchy of taxa: kingdom, Phylum, class, order, family, genus, and species.Classification lab											
							Explain the binomial nomenclature system.				
							Construct and use a dichotomous key.	Shoe/shark activity			
BDI.1: Biodiversity	Explain classification criteria for fungi, plants and animals.	Classification lab									
	Compare the major divisions of animals.	Classification lab									

	QUARTER 4			
Topic: Energy and Ecology; Introdu	uction to Ecology and Biosphere			
Key Terms: abiotic factors, biome, biosphere, biotic factors, community, ecology, ecosystem, population, sustainability				
Intellectual Disposition/Measural	ble Skills: construct, Interpret, Investigate, explain, describe			
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations		
BDI.1: Biodiversity	Investigate the effects of physical/chemical constraints on all			
	biological relationships and systems.			
B.DI.2: Ecosystems	Define ecology, describing its levels, and explain how ecologists			
	learn about the structures and processes of our natural world.			
	Explain why the biosphere is patchy.	Reindeer population lab		
	List and describe the major abiotic factors affecting the			
	distribution of life in the biosphere, describing ways organisms			
	adapt to their environment.			
	Explain how ecosystems tend to have cyclic fluctuations around			
	a state of rough equilibrium.			
	Define and provide examples of biosphere, biome, ecosystem,	Climatogram activity		
	community, population, species habitat, and niche.			
	Discuss biotic and abiotic factors that affect land and aquatic	POGIL biomes		
	biomes.			
	Explain how organisms cooperate and compete in ecosystems			
	and how interrelationships and interdependencies of organism			
	may generate ecosystems that are stable for thousands of			
	years.			
	Explain why organisms with low genetic diversity and long-life	POGIL biological magnification		
	spans might suffer the most in a rapidly changing climate.			

	QUARTER 4	
Topic: Energy and Ecology; Popula	ation Ecology	
Key Terms: carrying capacity, den	sity-dependent, density-independent, ecological footprint, exponent	ntial population, competition, limiting
factors, logistic population, population	ation, population density	
Intellectual Disposition/Measura	ble Skills: construct, interpret, investigate, explain, describe	
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
B.DI.3: Loss of Diversity	Describe the spread and consequences of introduced lionfish in	
	the Atlantic region. Relate this to other invasive species.	
B.DI.2: Ecosystems	Explain through mathematical interpretation the concepts of	
	carrying capacity and homeostasis within biomes.	
	Investigate population changes that occur locally or regionally.	Reindeer population lab
	Explain the concept of carrying capacity.	POGIL populations
	Apply the exponential growth model and logistic growth model	
	to sample populations.	
	Explain how organisms cooperate and compete in ecosystems	
	and how interrelationships and interdependencies of organism	
	may generate ecosystems that are stable for thousands of	
	years.	
	Describe examples of competition, symbiosis and predation.	POGIL biological magnification
	Explain the process of ecological succession, and describe the	POGIL succession
	different communities that result.	
B.DI.3: Loss of Diversity	Describe the growth of the human population over the last	
	2,000 years, including how age structure diagrams can help to	
	predict changes in a population and in social conditions, and	
	how the ecological footprint of a nation indicates the country's	
	impact on the world's resources.	
	Explain how and why the North American population of	
	mammals has changed in the last 15,000 years.	

		ΓA.	к	- 6	-4
-	-				

Topic: Energy and Ecology; Obtaining Energy from Food

Key Terms: autotrophs, cellular respiration, consumers, heterotrophs, photosynthesis, producers, biodiversity, biochemical cycles, magnification, biomass, chemical cycling, community, competitive exclusion, consumers, decomposers, detritivores, ecological niche, ecological succession, food chain, food webs, herbivores, competition, mutualism, primary succession, producers, scavenger, secondary succession, trophic structure

Intellectual Disposition/Measurable Skills: construct, explain, describe, compare, interpret

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
B.DI.2: Ecosystems	Explain how ecosystems tend to have cyclic fluctuations around	
	a state of rough equilibrium.	
	Differentiate between interspecies and intra-species	
	competition for resources, and what occurs when a species	
	immigrates to or emigrates from ecosystems.	
	Describe how organisms transform energy (flow of energy) and	
	matter (cycles of matter) as they survive and reproduce.	
B.C.2: Cellular Processes	Explain how energy flows through ecosystems in one direction,	Disappearing marshlands
	from photosynthetic organisms to herbivores to carnivores and	
	decomposers.	
B.DI.2: Ecosystems	Discuss the role of beneficial bacteria (e.g., in the recycling of	POGIL nitrogen cycle
	nutrients).	
	Explain how the amount of life any environment can support is	Food energy lab
	limited by the available matter and energy and by the ability of	
	ecosystems to recycle the residue of dead organic materials.	
	Diagram the flow of energy using food webs, food chains, and	
	pyramids (e.g., pyramid of energy, pyramid of biomass and	
	pyramid of numbers).	
B.DI.3: Loss of Diversity	Read and describe current journal articles relating to	Diversity argumentation
	environmental concerns.	
	Discuss and evaluate the significance of human interference	Diversity argumentation
	with major ecosystems.	

QUARTER 4				
Topic: Living Organisms; Unifying Concepts of Animal Structure and Function; Working Plant				
Key Terms: anatomy, ectotherms, endotherms, tissue, homeostasis, negative feedback, organ, organ systems, physiology, positive feedback,				
organ, organ systems, physiology, positive feedback, tissue, atypical dominance, asexual reproduction, blade, carpel, cotyledons, dermal				
tissue system, dicot, fertilization, f	lower, fruit, ground tissue system, monocot, ovary, ovules, petals, phl	pem, secondary growth, Seed, sepals,		
shoot system, stamen, stigma, vas	cular tissue system, wood, xylem			
Intellectual Disposition/Measurable Skills: investigate, identify, describe, explain, locate, recognize, examine				
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations		
B.C.1: Cell structure and function	Describe the molecular composition of a living cell specifically its			
	elements and complex molecules.			
	Explain how complex interactions among different kinds of			
	molecules in the cell cause distinct cycles of activities such as			
	growth and division.			
	Identify major types of animal cells and tissues.	Frog dissection		
B.C.2: Cellular processes	Describe the major components and functions of physiological	Frog dissection		
	systems, including skeletal, muscle, circulatory, respiratory,			
	digestive, urinary, endocrine, nervous, reproductive and immune.			
	Describe the basic mechanisms of plant processes especially			
	movement of materials and plant reproduction.			
	Explain the functions of unique plant structures, including the cell			
	wall, chloroplasts, and critical parts of the flower and seed.			

District Instructional Resource:

Biology Concepts and Applications Level 1 (2018) / Cengage (6-year online subscription: 2019-2020 to 2024-2025)

Standards Alignment:

Ohio Learning Standards (2018) – retrieved Jan. 2, 2019 <u>http://education.ohio.gov/getattachment/Topics/Learning-in-Ohio/Science/Ohios-Learning-Standards-and-MC/SciFinalStandards121018.pdf.aspx?lang=en-US</u>